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Task Introduction

® Ad-hoc Video Search

Given a text query, retrieve the most relevant top 1000 video clips from the V3C vimeo
collection [1], which contains about one million video clips

Text: several woman are setting up in the blocks
preparing to start a track race.

[1] V3c—a research video collection, ICMM, 2019




Task Introduction

® Ad-hoc Video Search

Given a text query, retrieve the most relevant top 1000 video clips from the V3C vimeo
collection [1], which contains about one million video clips

Text: several woman are setting up in the blocks
preparing to start a track race.

® Challenge

The semantic matching between videos and texts

[1] V3c—a research video collection, ICMM, 2019



Task Introduction

® Video-Text Cross-modal Retrieval

« Dominant approach: learning joint embedding space and global visual-semantic matching
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Our System

Two-branch Model
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Two-branch Model

® Two-branch Matching Model T b e b
+  Global Matching iier |
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a egg has been broken and dropped into the
cup and water is boiling in the sauce pan.

* Fine-grained Matching
« HGR [4] |
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[2] Vse++: Improving visual-semantic embeddings with hard negatives, BMVC, 2018
[3] Dual encoding for zero-example video retrieval, CVPR, 2019

[4] Fine-grained video-text retrieval with hierarchical graph reasoning, CVPR, 2020 N
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Hierarchical Graph Reasoning (HGR)

® Multi-level Video-Text Matching R LR e LT T .
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Hierarchical Graph Reasoning (HGR)
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Hierarchical Graph Reasoning (HGR)

® Textual Graph Construction
» Event node: the whole text query
* Action node: verbs in the text
» Entity node: noun phrases in the text

Hierarchical Textual Encoding

> _ E
2 LSTM a egg has been broken and dropped into the vents
A cup and water is boiling in the sauce pan @
v (@)
€gg ..V_ LSTM _ action action action )
Iy 1 2 3 Foilin Actions
\ broken dropped 9 ° ° 0 @@@
has — LSTM| > —
patient patient patient
F a Entities

4 6
. aeggy direction water | location ° @ ° ° @ @
5[ UR
pan LSTM into the cup in the sauce pan @ @

Word Contextual s ic Rol h . Attention-based Hierarchical
Embedding emantic Role Graph Construction Graph Reasoning Textual Embedding

16



Hierarchical Graph Reasoning (HGR)

® Textual Graph Construction
» Event node: the whole text query
* Action node: verbs in the text
» Entity node: noun phrases in the text

® Attentive Graph Reasoning —— Relational GCN
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Hierarchical Graph Reasoning (HGR)

® Multi-level Video-Text Matching [ SEREEREEEEEEEEEEEEE .
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® Hierarchical Video Encoding
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Hierarchical Graph Reasoning (HGR)

Hierarchical Video Encoding

® \/ideo Encoding

Events

LU

Actions

QOO0

Entities

QOO0 =

i ua
Hierarchical -~ . _

Video Embedding \'g

V ={f1 - fu}
vei =Wof i, € {e a,o0}

)




Hierarchical Graph Reasoning (HGR)

Video-Text Matching

Global Match
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Video-Text Matching Results

® Video datasets : TGIF, MSRVTT, VATEX
Image dataset : MSCOCO (only for global matching models)

® Video features : ResNeXt-101, irCSN-152

Image features : ResNeXt-101
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Video-Text Matching Results

® Four runs for the final submission:

 Run4: The global matching branch trained on video datasets

Tablel. Results on TRECVID 2019 and 2020 AVS Main Task.

Submissions 2019 2020
Winner in 2019 0.163 -
Run4 0.177 0.354

22



Video-Text Matching Results

® Four runs for the final submission:

 Run4: The global matching branch trained on video datasets
 Run3: Run4 + global matching branch trained on image datasets

Tablel. Results on TRECVID 2019 and 2020 AVS Main Task.

Submissions 2019 2020
Winner in 2019 0.163 -
Run4 0.177 0.354

Run3 0.193 0.350
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Video-Text Matching Results

® Four runs for the final submission:

 Run4: The global matching branch trained on video datasets
* Run3: Run4 + global matching branch trained on image datasets
* Run2: Run3 + fine-grained matching branch (HGR)

Tablel. Results on TRECVID 2019 and 2020 AVS Main Task.

Submissions 2019 2020

Winner in 2019 0.163 -
Run4 0.177 0.354
Run3 0.193 0.350

Run2 0.195 0.357
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Video-Text Matching Results

® Four runs for the final submission:

 Run4: The global matching branch trained on video datasets

* Run3: Run4 + global matching branch trained on image datasets
* Run2: Run3 + fine-grained matching branch (HGR)

 Run1: Run2 + BERT as text encoder

Tablel. Results on TRECVID 2019 and 2020 AVS Main Task.

Submissions 2019 2020

Winner in 2019 0.163 -
Run4 0.177 0.354
Run3 0.193 0.350
Run2 0.195 0.357

Runl 0.196 0.359 e



Video-Text Matching Results

® Four runs for the final submission:

 Run4: The global matching branch trained on video datasets

* Run3: Run4 + global matching branch trained on image datasets
* Run2: Run3 + fine-grained matching branch (HGR)

« Run1: Run2 + BERT as text encoder

Tablel. Results on TRECVID 2019 and 2020 AVS Main Task.

Submissions 2019 2020
Winner in 2019 0.163 -
Run4 0.177 0.354
Run3 0.193 0.350
Run2 0.195 0.357
Runl 0.196 0.359
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Video-Text Matching Results

® Four runs for the final submission:

 Run4: The global matching branch trained on video datasets

* Run3: Run4 + global matching branch trained on image datasets
* Run2: Run3 + fine-grained matching branch (HGR)

« Run1: Run2 + BERT as text encoder

Table2. Results on TRECVID AVS Progress Subtask.

Submissions Results
Winner in 2019 0.177
Run4 0.235
Run3 0.208
Run2 0.220

Runl 0.223 27



Take Home Message

® \We propose a two-branch model by combing the global matching
and fine-grained matching for the AVS task
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Take Home Message

® \We propose a two-branch model by combing the global matching
and fine-grained matching for the AVS task

® Training on additional image captioning dataset can improve the retrieval
performance on 2019 AVS task, but not on 2020 AVS task
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Take Home Message

® \We propose a two-branch model by combing the global matching
and fine-grained matching for the AVS task

® Training on additional image captioning dataset can improve the retrieval
performance on 2019 AVS task, but not on 2020 AVS task

® Our models rank the 1st place on the TRECVID 2020 AVS Main Task.
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THANKS |

If you have any questions , please feel free to
contact with us:

zylday(@ruc.edu.cn, syuging(@ruc.edu.cn,
cszhel(@ruc.edu.cn, gjin@ruc.edu.cn

http://jin-gin.com/AIM3-Lab.html
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